https://www.futura-sciences.com/sciences/dossiers/mathematiques-cache-hasard-883/page/3/
Prenons l'exemple d'une fonction donnée par f(x) = 4x(1-x), et supposons qu'une grandeur x évolue en suivant la fonction f. Par exemple, à un certain instant, la grandeur est x0. Une seconde après, elle vaut f(x0)=x1, et ainsi de suite. Cela nous permet de définir une suite x0,...,xn,... dont nous pouvons facilement calculer les valeurs exactes si l'on connaît x0. Pour autant, nos ennuis ne sont pas tout à fait terminés, parce ce que dans le monde réel, la « mesure » qui donne x0 n'est jamais parfaite, et il faut admettre qu'on fera sans doute une petite erreur...
Propriétés d'un système chaotique
Or, la prise en compte cette cette petite incertitude débouche sur trois propriétés déroutantes de notre « système dynamique » (c'est-à-dire la suite des xn) :
1. La moindre erreur augmente jusqu'à devenir ingérable : c'est la dépendance aux conditions initiales.
2. L'allure même de la suite (croissante, décroissante, etc.) dépend de la moindre petite erreur : c'est la densité des points périodiques.
3. L'augmentation de l'erreur est telle que, dès que n est un peu grand, nous ne pouvons plus rien dire sur la valeur de xn : c'est la propriété de mélange.
Ces trois propriétés définissent ce qu'on appelle un système chaotique. Ce que montrent les systèmes chaotiques c'est qu'une incertitude minime peut irrémédiablement conduire à une totale impossibilité des prévisions. Cela a souvent été interprété comme un exemple de hasard, dans le sens où le comportement du système est imprévisible, donc (c'est une définition du hasard), aléatoire.
Mais si l'on est plus rigoureux, on comprend que ce « hasard » n'existe que parce qu'il y a déjà, au départ, un petit hasard, une petite incertitude sur la condition initiale. Un système chaotique n'est donc pas « une machine à fabriquer du hasard », mais « une machine à amplifier du hasard ».